Asymptotically Flat Initial Data with Prescribed Regularity at Infinity

نویسندگان

  • Sergio Dain
  • Helmut Friedrich
چکیده

We prove the existence of a large class of asymptotically flat initial data with non-vanishing mass and angular momentum for which the metric and the extrinsic curvature have asymptotic expansions at space-like infinity in terms of powers of a radial coordinate.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Initial data for stationary space-times near space-like infinity

We study Cauchy initial data for asymptotically flat, stationary vacuum space-times near space-like infinity. The fall-off behavior of the intrinsic metric and the extrinsic curvature is characterized. We prove that they have an analytic expansion in powers of a radial coordinate. The coefficients of the expansion are analytic functions of the angles. This result allow us to fill a gap in the p...

متن کامل

Asymptotic properties of the development of conformally flat data near spatial infinity

Certain aspects of the behaviour of the gravitational field near null and spatial infinity for the developments of asymptotically Euclidean, conformally flat initial data sets are analysed. Ideas and results from two different approaches are combined: on the one hand the null infinity formalism related to the asymptotic characteristic initial value problem and on the other the regular Cauchy in...

متن کامل

Radiative gravitational fields and asymptotically static or stationary initial data

We describe our present understanding of the relation between the behaviour near space-like infinity of asymptotically flat Cauchy data for Einstein’s vacuum field equations and the asymptotic behaviour of their time evolution at null infinity. It is shown that asymptotically flat, static vacuum solutions admit an analytic conformal representation in a neighbourhood of the critical sets at whic...

متن کامل

A rigidity property of asymptotically simple spacetimes arising from conformally flat data

Given a time symmetric initial data set for the vacuum Einstein field equations which is conformally flat near infinity, it is shown that the solutions to the regular finite initial value problem at spatial infinity extend smoothly through the critical sets where null infinity touches spatial infinity if and only if the initial data coincides with Schwarzschild data near infinity.

متن کامل

Boundary Regularity, Uniqueness and Non-uniqueness for Ah Einstein Metrics on 4-manifolds

This paper studies several aspects of asymptotically hyperbolic Einstein metrics, mostly on 4-manifolds. We prove boundary regularity (at infinity) for such metrics and establish uniqueness under natural conditions on the boundary data. By examination of explicit black hole metrics, it is shown that neither uniqueness nor finiteness holds in general for AH Einstein metrics with a prescribed con...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001